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ABSTRACT

In this report the response of a moored body to current loadings
is investigated. A nonlinear analysis of the steady-state deflections of
bipod and tripod moorings is made in Parts I and II. The mooring ca-
bies are assumed to be extensible and are loaded with constant gravity
and current drag forces. It is shown that the cable weight-in-water is
a significant factor in the deflection limited design of a cable system.

In Part III the cable mooring system is represented by linearized
equations. Numerical integraticn is used to investigate the transient ro-
tational and translational response of the moored body to changes in the
ambient current.
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TRE ANALYSIS OF MOORING SYSTEMS AND RIGID BODY DYNAMICS
FOR SUSPENDED STRUCTURES

J. M. Gormally and R. Pringle, December 30, 1966

INTRODUCTION

This report bears on the static and dynamic response of suspended arrays and
their mooring systems to varying currents and initial conditions. The results of
these considerations piay a part in the feasibility studies for different array con-
figurations described in Technical Report No. 13.!

Bipod and tripod mooring systems are first examined in some detail. It is
shown that a considerable increase in mooring rigidity may be obtained by using
neutraliy buoyant cable, which reduces the sag in the individual anchor iines. In
treating the attitunde dynamics of suspended arrays, the structures themselves were
assumed perfectly rigid. Numerical calculations are carried out for a tetrahedral
and a spherical array showing that these angular excursions due to realistic per-
turbing forces are indeed quite toierable.

Part 1

DEFLECTION ANALYSIS OF BUOYED BIPOD
AND TRIPGD CABLE SYSTEMS

In this report we present a deflection analysis of buoyed bipod and tripod
cable systems. The common cable point is subjected to buoyant lift and current
drag forces, and current drag and weight-in-water luadings on each cable are simu-
lated by a distributed loading that has constant magnitude and direction. These
loading conditions should provide a realistic measure of the steady-state deflections
of the bipod and tripod syétems in a deep-ocean operating environment.

'F. T. Geyling, Technical Report No. _J, "Preliminary Concepts for Suspended

Underwater Arrays (U)," Bell Telephone Laboraivries for Office of Naval Research,
Contract N00014-66-C0905, January 31, 1967, Confidential.
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In Section 1 we review the basic solution for an extensible cable deflecting in
a plane under a gravity-type loading. Standard cable equations are developed into
numerically well conditioned expressions that apply when the total distributed load
is small compared with the tension in the cable., This basic solution is extended in
Section 2 to ireat a single cable in three dimensions subjected to a constant distri-
buted load of arbitrary magnitude and direction.

In Sections 3 and 4 this single cable analysis is employed in a synthesis of
the bipod and tripod systems. A Newton-Raphson iteration procedure is proposed
for the solution of the fundamental equilibrium and compatibility equations. The
cartesian components of the tensions at the common cable point are taken as the
fundamental unknowns, and formulas for the trial values are given.

A computer program for the analysis of the tripod system has been generated,
and some numerical results are reported in Part II of this report.

1. BASIC CABLE SOLUTION

In this section we review the solution for a single cable urder a distributed
constant vertical loading. The deflected shape of the cable is referred to a cartesian
(X, Y, Z) reference frame (see Figure 1) and the end points o1 the cable are desig-
nated as point 0 and poirt 1. The relative coordinates [i.e., (Y1 - Yo), (Z1 - ZO)]
are expressed in terms of the reactione at point 1, the unstretched length of the
cable (Lo), the distributed load (w), and the extensibility of the cakble (k). The ex~
tended length of the cable is denoted by L.
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Defining the tensions T1 and TO,

T, = [Pf{ , Pzz]l/z (1)
Ty = [P% + (PZ - wL)z]l/Z, (2)

the relative coordinates may be determined from the following expressions:

T T
1 0
(2, - 2g) = (1-=2 (3)
T
or
oC
_[L _wkL 172 ) (_1j)kok+1,k
(Zl‘ZO>-(=f;>(Pz %) z ;(k+1)‘1)2 A @
k=0
where
A )iz (wiy2) (5)
\Ty Ty
and
P T, +P ‘
- =_X 17772 ).
(Yl YO) = 108 T.+ P, - wL (6)
0 Z
or
r o«
e _Y)sz (L~ (zl-zo)l B -
1~ %o T, + Py, K+ 1
, =O
where
wiL|1 + (2, - 2q) /L]
B=——s5 : (8)
1%z
The series expansions should be used to preserve numerical accuracy when A,
B = 0.1.
The extended length of the cable is given by
- k z 1
L=Ly+y [ToL + Py (5 - 2,) + Py (¥, - ¥,) ) 9)




Remark 1

The equations have been derived under the assumption that the cable is ex-
tensible and that w is the distributed load on the cable in its axtended (equilibrium)
position. They must be solved iteratively to obtain the extended length of the cable.

Remark 2

The modification of these expressions for determining the coordinates of
points along the cable is given in the appeadix.

To synthesize cable arrays, we require the follow:ng pariial derivatives that
have been developed in compact form:

P
gg—y 5y - 2p) =- To%{ (21 - 7o) (10)
> v Pyl - %) 1
E_PE(ZI‘ZO% Ty~ Toh b

P
5%2' (Y1 - Yo) =§f2;{ (24 - Zg) =~ 717(}_1 (2, - Zo)s (12)
-1
3 e (v, - ¥) P4{1-8) [(’ﬁ - Zg) L (2~ Zo)].

3Py (%1 - %o) Py T, (T, + P5) L To T 2 (1)

In deriving these expressions, we hae ignored the extensibility of the cable
(1.e., L was treated as a constant). This restriction does not impair the effective-
ness of an iteration scheme applied to realistic cable systems because of the small-
ness of k.

2. SINGLE CABLE — ARBITRARY CONSTANT LOADING

In this section we consider the deflections of a single cable in three dimensions
subjected to a constant distributed loading of arbitrary magnitude and direction
(Figure 2). With these loading conditions, the cable will deflect in a plane deter-
mined by the distributed loading vector and the cable tensions. In this plane, the
basic cable expressions of the previous section apply (after an appropriate rotation
of the coordinate system).
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Figure 2. Cable In Three Dimensions

Remark 3

We employ upper case letters to denote vectors, and s:bscripts 1, 2, 3 to de-
note their cartesian components in the fundamental frame (Figure 2).

We proceed by introducing a set of unit vectors I,J, K. The K vector is selec-
ted so that it is in a direction opposite to the total distributed load W = (Wl, Wz, W3).

K=(K K K):(- Wi W2 W
'S 1) 2’ 3 !“’I’ ‘W" ‘Wv‘
\
wi = (W2 wl e w2)l/2,

The unit normal to the plane defined by W and the cable tension at point 1
[P= (Pl’ Py, P3)] is given by

(14)

(15)

= _ PxK
I= (11’12’I3> TiPxKI (16)
The triad is completed by defining
J= (JI,JZ,J3> =KxI (17)

_Kx(PxK) _P-XEK-P)
P x K| IPxK|

——— o o i 2o 2,
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The cartesian components of the cable point 1 |R = (RI’RZ’R3)] are given in the
fundamental reference frame (Figure 2) by

R, = Ry + J; (Yl - Yp) + K (2 - Z,) (1=1,2,3). (18)

Since the cartesian components of the vector P may, in the fundamental frame, be
written as

P, = PyJ; + P,K;, (i=1,23), (19)
we have
3 3
Py=D PJ, Py=3 PK,. (20)
i=1 i=1

To synthesize a cable network, we require the sensitivities of R to changes in
the reaction P. These quantities may be calculated from the following set of ex-
pressions (i, j = 1,2,3).

dR. dJ. oP
i_ v ) _ d _ Y
55 =59 (Y1~ Yo) + 91 5Py (¥y - Yo) + 5Py (24 Zo)]gpj
oP
e I _ Z 21
+[5_—Pz (Y, - ¥) *5p; (2, Zo)] Sp v (21)
where
3
Py _ K. °Py _ J. + p. 2 (22)
5Pj j SPJ. j i B—PE
i=1
od oP, d -1
1 I el O i 9 pxki | |PxK .
5P, (SFJ.‘ KiKJ') P x K| 5P R R (23)
The partizal derivatives of the scalar |P x K| are given by
. 3 - ( -
IP x K| N IPx K = -K, (P3K1 P1K3) + X, (P1K, PZKI),

|P x K1 5%5 IPxKj = +Ky (PKy - PoKo) + K (BK,y - PoK;).  (24)

IP x K 5%3: |P x K| = -xz(p2x3 - P3x2) + K, (P,K, - P K,).

Remark 4

The complexity of the expressions (21) to (24) is of course caused by the de-
pendence of the vectors I and J upon the reaction P.
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Figure 3. Bipod System

Remark 5

The quantities (Y1 - YO) and (Z1 - ZO) are calculated by the expressions in
Section 1. The quantities PY and PZ are provided by (20) and w = {W|. The un-
stretched length of cable LO and the extensibility of the cable are assumed known.

In the following section, we apply the results developed in the nresent section
to the analysis of the bipod system.

3. APPLICATION TO THE BIPOD SYSTEM

The bipod cable system is illustrated in Figure 3, where the fundamental ref-
erence frame with unit vectors (i_l’ 1_2, _'1_3) is defined. Each cable in the system is
subjected to a constant distributed loading, and the buoyed joint is subjected to a
loading F = (FI'F:?.' F3), which results irom buoyant lift and current drag.
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Let us adopt a sign convention for the forces bazed on the unit vectors (i 1,_1_ 2
1~3) and designate the cable reactions at the tops of rables 1 and 2 by P1 =(P11E
P2 = Piz , respectively. The equations of equilibrium of the buoyed joint may then
be written as

. 1 52 . \
C;=F;-P{-P{=0 (i=1,23). (25)

The conditions for compatible displacement of the buoyed Joint require that
Ci3=RI-RZ=0 (1=1,2,%) (26)

where pl =(Ril) and R2 = (R;z) determine the joint position as calculated along cables

1 and 2, respectively, from the origin of the fundamental reference frame.

Equations (25) and (26) provide six equations for the six unknowns P1 = (Pil ),
P2 = Pi2 , (i =1,2,3). We propose that these six equations be solved iteratively by
a Newton-Raphson procedure. Trial values of the quantities PI, P2 are given at the
end of this section.

The Newton-Raphson method requires the partial derivatives of the equations
of condition Ck (k=1,..., 6) with respect to the unknowns (P11 ), (Pf), (i=1,2,3).
The required array may be written in the form

Ock’ 3C, (k=1,...,6) n
3P} P2 G =1,2,3)

Taking the partial derivatives of (25) and (26) we have the results*

3C; 3G .
—3 3~ ‘61j 1,j =1,2,3), (28)
JdP; P
j i
1 2
3C, aR; dC, OR;
WL oL Gi=123 (29)
dPJ BPJ E‘Pj Opj

The partial derivatives in (29) are provided by the expressions in Section 2.

In determining trial values for the cable reactions, it is convenient to ignore
the distributed loadings and base the estimates on the load F and the "swayed" geo-
metry of the bipod. Let us define El, E2 as the unit vectors along the legs of the

“'swayed’ bipod. The equilibrium of the buoyed joint gives

2
Fi-(lPllEilﬂP"lEiz)=0 (i=1,2,3). (30)

= (i)




£05 el s el S Dt SR A

Ly

P L HE LY

E

e

il atan € 0 it b g S

If we solve these equations for |P1| and |P i, the t-ial values are given by 11'1
|P1|E1, ., The "swayed'" geometry is defined by the unit vectors

/Fl_iq_F)

(f

(31) /

_§
’ f

t"ln‘

where

(32)

Solving (3), we obtain

(33)

4, APPLICATION TO THE TRIPOD SYSTEM

The analysis of the tripod system {Figure 4) parallels that of the bipod system
in the previous section. The unknowns are the cartesian components of the cable

reactions P!, P2, P3, and the equilibrium of the buoyed joint is specified by the
equations

2]
C,=F, - P -P - P’ (i=1,23) (34)

The conditions for the compatible displacement of the buoyed joint require that

C,3=Ri -RE=0

) 3 (i=1,2,3), (35)
Cisg =R - Ry =0

where (R}), (Riz), and (Rf) determine the joint position as calculated along cables

1, 2, and 3, respectively, from the origin of the fundamental reference frame.

. The array of partial derivatives of the equations of condition (34) and (35) may
‘} be written in the form
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~ . Ac o
C’Cn’ ka’ ¢Cy (k=1,...,9) (36)
oP] BP? aP;3 G =1,2,3)
Taking the various partial derivatives of (34) and (35), we obtain
G G G _ (,j =1,2,3) (37)
—— = eem— I = i 3 - 9Gy y
5P} ap¢ ap3 Y
i i i
3C,.. 3R »C SRZ 3C
+3 _ 91 i+3 _ i i+3 _
P1 = 1’ 92 =" 2: 3 “0, (38)
3 i BPj ij ij an
5C,.« 2R} acC 3C 3R
1#6 _ 94 1#+6 _ 1#6 _ %1 (4,j = 1,2,3). (39)
spl  spl P2 5% 3p3
j i i j i

As before, the partial derivaties in (38) and (39) are provided by the expressions
in Section 2.

In determining trial values for the reactions, 1t is convenient to ignore the
distributed loading and base the estimates upon the load F and the initial geometry
of the tripod. Let us define El, E2, E3 as the unit vectors along the legs of the
tripod (undisturbed position). The equilibrium of the buoyed joint gives

1. 2
Fi-(lP |m§+|p2|Ei+|p3|Ef)=o (1 =1,2,3). (40)

10
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give by Pil = §P1|E11, etc. For cable structures under consideration, the members,

If we solve these equations for the quantities |P1|, [Pzi, |P31, the trial values are
of course, must always be in tension.
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Using these values, we obtain

_Lo/a )
P2 (E Ry ViR, - ),
p?) - 0 dp -V3F,-F 2
=g\ s 2 iy (42)
L
3 (o 2L >
P =2 i
1= nf3+t3g 1

5. CURRENT LOADING ON THE CABLES

In this section we present the expressions for calculating the current loading
on the cables. We assume that the basic theory for flow around rough cylinders
applies to the cables and that we may use the associated normal and tangential drag
coefficients.

Let us define E as the unit vector along the undisturbed direction of the cable.
We assume that the current forces act in a plane defined by this vector and the
stream velocity vector V = (VI,VZ,Vs). We define a unit vector normal to the cable
and contained in this plane by the exvression

N__:Ex(VxE)zv-E(V-E)
|IVxE] IV x Ejf

(43)

The components of velseity in the normal and tangential directions are given by

Vp=V-E,
V=V N (44)

Using the standard drag expressions, the normal and tangential forces per unit
length are determineg as

) 2

Fx 5 ConPde I (45)
and s 2

Fp =2 Cpy 0, (Vo) (46)

where CDN and CDT are the normal and tangenual drag coefficients, respectively.
The cable diameter is denoted by dc, and p is the density of water.

The cartesian components of the current loading are given by

FpE; + FyN; (1=1,2,3} 47)
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6. SUMMARY

We have presented the fundamental equations for determining the steady-state
deflections of current loaded bipod and tripod cable systems. These equations were
developed under the assumption that the distributed current loading cn the individual
cables could be approximated by distributed loading with constant magnitude and
direction. Numerical experience with a practical tripod system showed that the
cable slope varies by less than 0.5 percent (even with large buoy drag loads), so that
this assumption is extremely good. Some material related to the present problem
may be found in other documents.??

*Basil W. Wilson, ""Characteristics of Anchor Cables in Uniform Ocean Currents,"
Texas A&M Research Foundation Report No. 204-1, April 1960,

*W. T. O'Brien and A. J. Francis, ""Cable Movements Under Two-Dimensicnal
Loads," J. Struc. Div. ASCE, June 1963, pp 89-123.
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Appendix
COORDINATES OF POINTS ALONG A SINGLE CABLE

The coordinates of points along a single cable may be obtained by a simple
modification of the equations in Section 1.

To find the stretched coordinates of a point S* on the unstretched cable, we
first solve (1) through (9) to obtain L. Then we employ the same equations, suksti-
tuting [Pz - W(L - 8)j for P,, and §, and $* for L and Ly, respectively. The quantity
S clearly stands for the stretched location along the cable of the point S*. Equations
(1) through (9), with the stated substitution, now yield [ Y(8*) - YO] and [ Z(S*) - ZO]'
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Part I

DEFLECTIONS OF BUOYED TRIPOD CABLE SYSTEMS
UNDER CURRENT LOADING

We present here some numerical results for the steady-state deflections of a
buoyed symmetrical tripod structure under current loading expected in a deep ocean
environment. The primary object of this study is to identify the most significant
factors in the deflection-limited design of buoyed tripod cable systems. As such,
the study is not intended to be a parametric investigation sufficient for the optimum
design of these structures.

The numerical results were generated by the SPIDER program on the GE

DSCS (Desk Side Computer Systemn). This program employs the analysis given in
Part 1 of this report.

In Section 1 we review the symmetrical tripod geometry and delineate the
cabie and loading parameters under consideration. In Section 2 we examine the ore-
liminary design of the cables and present data on the buoyant lift and current drag
forces on lithium-filled buoys. We also establish limits on the geometry of the tri-
pod and consider the design of neutrally buoyant cables.

The influence of the loading and cable parameters on the tripod deflections is
explored in Section 3. The cable weight-in-water was found to have a mosu signifi-
cant influence on the tripod deflections. The stiffness of the tripod increases sub-
stantially with a reduction of the cable weight-in-water (for fixed cable strength).
Certain generalizations relating to tripod deflection response are made in Section 4
and extensions of the present investigation are recommended.

1. BUOYED TRIPOD STRUCTURE AND LOADINGS

The geometry of a symmetrical tripod cable system is illustrated in Figure 6.
The base projections of the cable legs are separated by 120 degrees and the funda-
mental bent geometry s specified by a height parameter h and a base parameter
d. The cables are defined by their diameters dc’ unit weight-in-water w o extensi-
bility kc, and unstretched length LO.
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Figure 6. Symmetrical Tripod

The loading on the tripod is defined by huoyant 1ift and drag forces on the
buoyed joint and the current drag and weight-in-water loadings on the cable. The
range of buoy drag forces considered is an order of magnitude larger than the nor-
mal buoy drag resulting from flow around a sphere. This extended range allows us
to examine deflections when a large structure is appended to the buoy, or when two
tripods are use as anchors for a structure with connecticns at the buoyed joint.

Because we are interested in situations where the deflections are small com-
pared with the height parameter h, the current loadings on the cables are czleulated
on the basis of the initial cable geometry. These forces are assumed to actina
plane defined by the current velocity vector and the initial cable axis, and are re-~
solved into normal and tangential components according to the usual theory of
flow around rough cylinders.'1 The expressions used in the SPIDER program are
given in Section 5 of Part I of this report. In the following secticn we consider the
preliminary de :i: ». of the cables in the tripod structure.

‘Wilson, op. cit.
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1
S In the present version of the SPIDER program, cable sizing is performed on
E the basis of initial tripod geometry and buoy 1lift force, using a factor of safety (FS)
L of 3. This procedure has proved extremely useful, since the maxirmmum cable tension
' - ) changes very little vith the addition of huoy drag, cable welght, and current loading.
In Figure 7T we have plotted the variation in maximum cable tension (solid line)
3 due to the addition of buoy drag for various fixed-l1ift forces. The initial de=ign ten-
3 sion is shown as the dashed line. We obgerve that the additional cable weight re-
! lieves tension in the cables (this is accomplished by the increased cable slope at
- the buoy).
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The initial cable size is selected on the basis of an empirical expression re-
lating ultimate cable strength Tu to cable diameter dc' This expression,

2

T, = 70 d,

kips 1)

(d, in inches), -

g
N

was obtained from Wilson® and checked against the data for 6 x 24 steel mooring
line in Baumeister® Cable weight-in-water for these cables is given by Wilson,’

7 -— 2 '.-
w, = 1.25 d Ib/it. (2)

The extensibility* (as defined in Part I) of these cables was estimated on the basis
of steel cross-sectional area by

. - 6.67x107° 3)
c p) .
dC

Considering only the buoy lift force F3, the preliminary cable sizing for the sym-
metrical tripod was performed using the following expression

1/2
[fe) ) .

where F, is given in kips. Actual cables were selected by rounding off this number
to the nearest cable size.

The expressions (1) through (4) are displayed graphically in Figure 8. For a
given lift force and factor of safety of cable design, we may obtain the preliminary
cable diameter and weight for various values of the ratio h/d.

2.1 Possible Beat Configurations

The bent configuration of a symmetrical tripod is specified by the height para-
meter h and the base parameter d. The expressions (1) through (4) may be employed
to show that for fixed h, d, the ratio K of buoy lift to total cable weight remains a
constant. Conversely, for fixed K the quantities h ard d must take restricted values.

>Wilson, op. cit. p. 47.

ST. Baumeister, Ed. Mark's Mechanical Engineering Handbook. New Yor}
McGraw-Hill Book Co., 1958.

"Wilson, op cit., p. 41.

*The extensibility (kc) is the extension in feet over a one-foot length of cable per kip
of applied load.
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Figure 8. Preliminary Cable Design

To avoid collapse of the structure, we require K > 1 and this condition defines
the class of possible bent configurations. This criterion may be developed in the

form
1/2
h xh ) .
J s _xh
3 (1 — (h in feet), (5)
where

x = 1.79 x 107° (FS) (K) (B)
=1.79 x 1070 .

In developing (5) we have allowed for the variation in FS and incorporated the para-
meter B = (floated cable weight/cable weight-in-water) to allow for cable weight re-
duction by the use of floats. In this {ormulation the quantity 7 is a constant for a
given geometry h, d.

19




£ B nATATIARS TR AR WP ¥ MR gy BT W Sl i A bt undag AT

1]
«
o) w
@ ®
= Q O
ot v
[} —
-~ ®
W. 2 9 T T3 T 1173 _HL
. ' RS
s 8% HAHH- W H 1
= 4 _ o 1 R 0 b4 RO
~ o T IR - - 5
= 5 E LEpssteag L T LR
Py mlw., =] I BEERNE - NENEN P TTRNT T
et
= iy : : T PEEN ERg =
QO .m 151 ~.?/wm MMU, il t _..N“ ER N o » 7@.
R O « <11 ,..H 11 ps [ o= ot IR SV ..am..r.JVﬁL. *
ES [ I o] M i *M - ~{-t-41 411 1= 4J< PSRN 0
- ¢ I8 + {4+ byge RS s - =]
@ 3 S " N T T H i u.u”,.””wn_ T o
@ 2 : | 3 AR L FETNAT TR TR T m
3 . A . IS Y ERRE IR g I
B 28 N R SRR
—d n o e A X IR R R R, R ERE SRR NG o @
B %3 ST s Ean s heuanneansn-asd can. d th=a M=
=@ 93 BEEEEE: T AT R R R R
S 28 B i TR e 8
.W.\Kc o ..I,.:. < I B iy 3 Nk M 3 AN
Q e .o - 3 dmemdes obos-debifodod 44 4 amge N -
w4~ o O B ml. b I : BSOS K i RS RE RS TIREt =
QO o~ - o INOE-S 1 o I -~ + . b ﬂu-.ﬁ. e e g feq o [3)
m m - H pee 1.1. ‘e 3 1141 11Y- T.yﬂ\iﬁ.*fth ey foel o
- ey e . .. -F S I ! VIR NP IR Y N
2~ OSBRSS & o At avﬂ‘u.:&u“;w e VDC:. Q
I M . JDENE ~ S S DG 154 . . mwi.?.rxlo KL.‘FT?UA,< : —t
W.w m @ vty i s 14 +e -1 st R RS R 1 - =]
o e © 2 e e i 430 111118 N ORRE RRERRERR ; @
o 0 2B a0 b By : shbiiant g
< 4@ o B I i o i ma REPRY B . - ma e Ry Seg Feay
-~ ¢ o g SERAS A RERUNSRRSODIA BESER DS u ! od Ll .
&2 ORI G TR T R I R o
-] w .m ‘e T vr . 4 + 4t 5. ! AR ®
T > ﬁu“ o v H N e P _Alou? o
7] : . . : E jOSREE DORS b
28 gz . . . Rl
° m Z 5 1 : ; X TS K
w L N ! . IR N
> 8 8o SEHHIE SIS 3 s
= n oo oyt +
— § ER -} FR RSN D M - ST B AN
—_ 3] §- . S - -4 - oovos e fo BN g
g O MR S + o e -t 1§ \ LG B . SRR SO
f= I A v o + . o ] - ~s-4 44 N . ”a*—l%r.,. DM
g= 259 B Iy WRAEET N AR Radde K bl bgus
£ o, [=7] + + - =4 3o e &...Ib.‘. vepe
— e @ [« ) . 4 e w . . fe e
m N . «yﬁ ~e-tod- 11~ 4»»q grefrasafaian
L o =1 B = Lt .
25 Al5E ,
H O KAl
2 :
: 5
! “—
' «




S

o it L L

Lo i

AT

Y 4 Sl

A (o it

Sl i A AR LA o i

TR T

v}'w.w«urvd AL A A

[P

2.2 Buoy Design

Very efficient buoy designs for deep ocean operations may be obtained through
the use of gasoline or lithium-filled spheres. As an example for which there is
some experience, we will confine our attention tc lithium-filled spherical shells
(wall thickness 1/4 inch) used in the Project Trident vertical array at Bermuda’

The lift and drag forces on these buoys may be approximated by the
expressions

db)3.26
Lift = 12| 17, (kips) (6)

Drag = 8.6 x 107 v2 ¢, 2 (kips) ™)

where V is the current velocity in knots and d, is the buoy diameter in teet.

To obtain a given lift force by the use of N buoys, the buoy diameter can be
selected by the expression

/v <e:10.307
d. = 4.67 Gtg_t)

b {ieet) {(8)

Example 2. A lift of 100 kipz may be obtained by using one buoy at 19.2 feet,
two buoys at 15.6 feet, or three buoys at 13.7 feet each. The respective drag
forces in a 1 knot current are 0.32, 0.42, and 0.48 kips.

The expressions {6) - (8) are displayed graghically in Figure 10. As indicated
previously, we consider a range of drag forces an order of magnitude larger than
those resulting from flow around a sphere (up to 10 kips).

2.3 Neutrally Buoyant Cables

In our numerical investigation we observed that cable weight was a significant
factor in the deflection response of the tripod. In this subsection we consider the

design of cylindrical floats concentric with the cable and spaced to provide an almost
neutrally buoyant cable.

If we consider floats with density Py and length Ll, and use the expression

1.4 d(2: 1b/ft (dc in inches) for the cable weight-in-air, the following nondimensional
expression can be readily derived

xe(229"”

*H. M. Kruchten, Determination of the Drag-to-Lift Ratio for Spherical Buoys at
Depths to 15,000 Feet, Bell Telephone Laboratories unpublished work.
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Figure 10. Lift and Drag Forces on Lithium-Filled Spheres

where df is the outer float diameter, A = L2/L1, L2 is the float spacing, and
K = pf/pw where p_ is the density of water +64 lb/ft3.

The relation (9) is displayed in Figure 11 where df/dc is plotted as a function
of k = pf/pW for various values of the spacing-size parameter.

Example 3. For float material such as an epoxy-glass matrix® pf ~ 45 1b/ft3,
x = 0.7, a continuous coat (A = 1) would have an outside diameter of ~2-1/2
inches for a 1 inch cable. The use of 1 foot long floats at a spacing of 10 feet
would require an outside diameter of 9 inches for a 1 inch cable.

’Interim Report on Properties of Buoyant Materials and Structures, Proteus, Inc.,
Contract NONR-4271(00), May 8, 1964.
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In the following section we examine the deflection response of a tripod to
(1) changes iu the cable and (2) loading parameters selected according to the ma-
terial of the present section.

3. PARAMETRIC INVESTIGATION

In this section we examine the deflection response of a symmetrical tripod to
changes in the cable and loading parameters. This deflection response is character-
ized by the horizontal and vertical deflections of the common cable joint. The cable
movements may be calculated once this is known, but results relative to these move-
ments are not presented.

Most of the results apply to a fixed tripod geometry 4000 feet high, and the or-
der of magnitude of the deflections (1 to 20 feet) should be interpreted relative to
this height. Cur primary concern is the relative change in magnitude of these deflec-
tions with changes in the cable and loading parameters. Absolute magnitude of de-
flections should be interpreted carefully.

3.1 Current Velocity and Direction

For a fixed configuration (h = 4000 feet, d = 4000 feet, Lift = 100 kirs) we have
investigated the influence of current velocity and direction on the tripod deflections,
while varying the buoy drag independently. These results are illustrated in Fig-
ure 12 where the horizontal deflection is plotted as a function of buoy drag for vari-
ous values of current velocity and direction.

We observe two significant features:

1. The relative magnitudes of the deflections are not strongly dependent upon
current velocity and direction

2. For small values of buoy drag there is a "'sway-back' of this structure
(i.e., the deflection is opposite to the current direction).

3.1.1 Remark 1. The "sway-back" phenomenon in a bipod may be illustrated by
2 very simple analogy. Consider the combined gravity and current loadings on the
bipod cables in Figure 12b. The magnitude of the resultant loading on cable A is
greater than that on cable B. An analogous situation is illustrated in Figure 12c
where a weight (constant lift) is suspended by two light strings (A, B). If we push
on string A and pull lightly on string B as shown, the common joint will move to the
left; in effect, opposite to the current direction. As the buoy drag is increased, the
joint moves in the stream direction.
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Figure 12. Influence of Current Velocity and Direction

3.2 Cable Parameters

In this subsection we examine the deflection dependence on the extensibilit
kc and weight-in-water w c of the cables, The most obvious result is the variation
in vertical deflection under the lift force due to changes in kc. This situation is ill-
ustrated in Figure 13a where k, = 0 corresponds to inextensible cables and k. =
3.3 x107° is roughly the value for 1-7/16 inch v steel hawsers. The most signifi-
cant feature displayed in Figure 13a is not the absolute differences in values of the
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The effect of reducing the cable weight-in-water W has considerably more
significant infiuence on the joint deflection than changes in kc' These resulis are
shown in Figure 14 where W, was varied while holding the 1ift and buoy drag constant.
The deflections corresponding to inextensible cables are given by tlie dashed lines,
and those correspoading to kc = 3.3 x 10'5 are given by the solid lines. We observe
that for a buoy drag of 10 kips the effect of rendering the cable neutrally buoyant is
a decrease in horizontal defiection of approximately 10 feet or 80 percent.
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Figure 14. Influence of Cable Welight

Remark 3. The effect of cable weight on the horizon‘al deflections is the
most significant result observed in the preseni numerical studies. It would seem
that floated cables would be ra2quired in applications where very small deflection
tolerancer (~ few feet) are necessary and the buoy drag is appreciable {~ 5 kips).
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3.3 Buoy and Lift Drag

In Figure 15 we show the effect of changes in lift force on the deflcction re-
sponse of the structure (for fixed buoy drag). The solid line refers to the situat.on
where the normal design weight of the cables is included in the calcuiation and the
dashed line assumes that neuwrally buoyant cables are employed.
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Figure 14, Influence of Buoy Lift
It is s2en that in the neutrally buoyant case the horizontal deflection is only
slightly dependent upon the lift force. Independent analytical and numerical checks
also indicate that the deflection depends very little upon the current loading.
Remark 4. If buoy lifetime were 2 critical element in the system design.
floated cables and multiple buoys (say, three buoys providing 50 kips lift each) would
preserve the horizontzl deflection response of the structure against buoy failure
(see Figure 15).
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3.4 Geometry

In the deflection-limited design of a buoy tripod system we can look for the
minimum-deflecticn structure under specified loading conditions and fixed height.
The present study has not been extensive enought to investigate this situation when

cable weight-in-water is considered. However, for floated cable systems we can
make some definitive statements.

An analytical investigation by the author for the tripod systems, ignoring dis-
tributed loadings, showed that the minimum-horizontal deflection structure has a

ratio h/d = 0.7. This result is almost independent of the height h, lift force, and
buoy drag.

We checked this result numerically for a tripod with fixed h, lift, and buoy
drag, considering current loading on the cables. The results for various h/d are

shown in Figure 16. We found that the minimum deflection did occur for h/d = 0.7
but that this was a very weak miniruum,

.
DU SDENRY R . i -

, SIS SETE . h= %004’
. _;3‘ s UMNearaatty Buoyd £ 100 K175
N CrgLes

he = SKind

e
4

Figure 16. Infiuence of Geometry

4. SUMMARY AND RECOMMENDATIONS

In this report we have examined the deflection response of buoyed tripods to
current loading, and identified the most significant factors that determine variations
in this response. We are presently developing an analytical solution for the tripod,
considering weight and current loadings. This will be available tor more extensive
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parametric studies and will allow a more complete investigation of the deflection
response to cible weight.

It is recommended that the proposed applications of buoyed tripods be deline-
ated more closely so that deflection-limiting criteria may be established. We also
suggest that variations in placement conditions affecting the symmetry of the tripod
be examnined and that temporal variations ir. the loading conditions be considered.
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Part III
DYNAMICS OF A MOORED RIGID BODY

Knowledge of the motions of a large, buoyant, rigid underwater structure is
important for underwater sound applications. In this report we consider such a
structure and its motions as determined by numerical quadrature of the linearized
equations of motion.

The purpose of a study of the dynamic response of large moored under sater
structur.s is to determine approximately the following properties: (1) the "settling
time" required for the structure to adjust to changes in ambient current; (2) the
amplitude of attitude moticas in response to initial conditions or disturbances from
trawlers and ground motion; (3) the linearized static displacements cf the structure
when subjected to steady current loading.

To achieve these aims, we have neglected such factors as flexibility of the
structure and current loading on the anchor cables. These assumpticns shouid not
alter the approximate response and are necessary for an efficient oreliminary an-
alysis. The validity of the linearized equations of motion was established by
a posteriori checks.

1. ASSUMPTIONS

First, we set up a general dynamical description of an underwat2r, moored
rigid body. Consider a body F. o with a center of mass C o and a cemer of buoyancy
CB’ Figure 17 shows the geometry of the body with the ith mooring cable K1 in
place. An !nertial reference frame R is established on the ocean bottom; the anchor
point of h‘ 1s denoted by PBi' a vector distance b {from R. The length vector of Ki
is 2 ! from Pp, to Py, the point of attachment of the cable and body B . The vector
from C0 the cenier of mass of B , to PA: is Q the center of b)Cvancy C isa
distance ._53 from C o The buoyam force Wb, equal to the vclume of B, a.mes the
density of water, is active at point CB'

The angwar velocity of Bo expressed in a body-fixed reference frame is given
as w. The position r of C relative to R is broken into r* the static position and ar
the dynamic displacoment from equilibrium.
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Figure 17. Geometry

of Mooring
s, INERTIAL
FRAME
2. EQUATIONS OF MOTION
The equations of motion of the system as defined are
N
o < 1 ~
mAr =D - Z£+(Wb-W)3 1)
i=1
. d Nc ~
H=p- 3 plxFlaweP a8 2)
i=1

where H =1 - w, I is the inerua dyadic. D, _Iid are the hydrodynamic drag force ard
moment, N c is the number of cables, and 3is along the earth's radius. The force
f_i is the force ~cting on the cable K1
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We must now compute f_l, D, L~ according to the iaws of physics and certain

assumptions. The geometry of the cable is given by 3,‘1 =r+ Qi - _l_)i.

3. MOORING FORCE

For a close approximation we neglect the weight and current reaction on the
cables. These effects are statically significant, but dynamically of secondary im-
portance compared with the longitudinal elasticity effect.* We apply Hooke's law to
the cable. The reaction force Ei on K, is in the direction of the total length &1 + A_Jzi,
where now we use quantities at equilibrium plus their dynamic displacements; e.g.,
r°+ Ar is written r + Ar. Figure 18 shows the simple geometry. The cable tension-
per-foot-defiection based on an unstressed length fi is glven as N;. The "stressed
cable" reaction force is

i i
: . Ay + ¢
7l aFl= N(I£i+ a2t - I,Si) —_—=.

The static force is

Linearity and e notation

gives

L
3 3 3)

2
up to order IA:}I . The last term is small compared with the firsi.

4. HYDRODYNAMIC DRAG

The drag on an arbitrarily oriented cylinder is calculated. The cylinders are
then used to construct a large tetrahedron structure by joining four cylindrical

*In this report we are attempting to study dynamic reactions of a structure to cur-
rent loading. Clearly the cffects of current on the rigid body are largely due to
loading on the body itself; this is because of the relatively large area of the body.
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members at the origin (see Figure 19) by their ends and using tension members
(cables) to complete the structure.

The axis of the cylinder is given by a vector r = r 1 for the ith cylinder,
where r1 is the distance from one end of the cylinder and T a unit vector. The pre-
vailing current is given by the scalar v in a direction u (the carat denotes a unit
vector). Consulting Figure 19 we aseume the current velocity v composed of two
parts: v perpendicular to r1 and v along r . Thus

where P! = (f - ?1?1) is a dyadic and T is the unit dyadic.*
The drag force Qi is an integration of the form

a,

Di prdd dri

i
= 2 !

A4

e

-1
0

where vJ_ = P v1 and v is a summation cf current and motion effects:

Xl= [vﬁ— (A:1:+£x1i>] .
The torque about the origin on the ith cylinder is
34
di _ PwCqd i ) I il
L —5 dr (r xv ) vyl -
0

The length of the cylinder is given by ay, the density of water by Py the drag coef-
ficient by Cd, the cylinder diameter by d.

We then linearize _121 and _Iidi by assuming v >> |ATl, lwx Eil .

5. SIMULATION: TETRAHEDRON ARRAY

Consider a rigid tetrahedron composed of cylinders as shown in Figure 20.
The rigidity of the structure derives from cables in tension against large cylindrical
members. Cable mass and drag effects are ignored for the moment but can be added

*A "dyadlc'" is a pair of vectors (say u and v) placed side by side. It has meaning
when another vector is dot or cross multiplied by the dyad to form a vector or
another dyad, e.g., (uv) * P, or {uv) x P.
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to this rigid body analysis as changes in n, I, and the drag and drag moment equa-
tions, once 2 layout for guy wires and hydrophone suspensions has been specified.

We define a iody coordinate frame with unit vectors 1'13, 2'5, 3b describing the
axes. This system is oriented by angles along the 'i, 5, 3 system (Inertial frame)
for static Pquilibrium The transformation matrix between a vector in T 2,3 and
orie in lb, '2b 3b is V C- Vb’ where Vi and Vb denote representations of the same
vector in the 1 2 3 and 1b 2b 3b systems, respectively. The equation of motion
(1) is expressed in the inertial frame and the equation {2) in the body frame.

The numerical integration of (1) and (2) was performed on the GE635 com-
puter for a specific tetrahedron structure, using the DEPAK integration package.
The vector operztions were carried out automatically on the computer. Figure 21

shows the dimensions of the system studied. Figure 22 shows the top view of cable
geometry and the current direction,

Figures 23 through 32 show a series of computer-plotted response curves.
The odd-numbered figures are plots of the deflections Ax, Ay, Az versus time (in
seconds) and the even-numberad figures are of the angles Y1 ¥9r Y3 of rotations
about lb, Zb b plotted versus time. The initial conditions; a one-knot current
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and no initial angies, deflections, or time derivatives of these. The variables Ax,
Ay, Az go to an equilibrium configuration to accommodate various values of current
angle of attack A. The transients in attitude are in every case less than 1 degree.

There is a simple empirical law of deflection for the structure as shown in
Figure 33. The total deflection, (Ax)2 + (Ay)z, is approximately con.tant at 17.5
feet for a one-knot current. The direcdon of this displacement is, to within a

few degrees, equal to \. For every €0 degree interval in X the pattern repeats it-
self because of structural symmetry.

Figures 34 through 39 show plots of dynamic response with a one-knot cur-
rent and initial conditions on the angles* Yy = 0.01 (Figures 34 and 35), Y9 = 0.01
(Figures 36 and 37) and vg = 0.01 (Figures 38 and 39). The {nitial conditions are
imposed one at a time as can be seen from the rather marked attitude resoonse due
to the initialized angle. This attitude response shows noticeable damping in all
cases and the translatory deflection approaches 17 feet as before (here A = 07).

6. CONCLUSIONS FOR THE TETRAHEDRAL STRUCTURE

The response curves are nearly self-explanatory. The deflections do not
seem particularly large and the angular response, while not too well damped in Y1
and 19» S€ems tc disappear in 1bout 200 seconds. The angles excited by current
alone are remarkably small, irdicating the possibility of using such a structure as
the support for a set of array hydrophones.

7. SIMULATION OF THE MOTIONS OF A SPHERICAL STRUCTURE

The system to be discussed here is similar in many respects to the previous
moored, rigid tetrahedron.

The drag force (using the notation of Figure 17) is independent of attitude
angles. It is given by

2
{y;Cri R
2=WD

2 (1u- i) (v- Abt)

where R is the radius of the sphere, U is the current vector, and A'g ir *he sphere
velocity relative to the earth. The drag provides a constant force plus a damping
force. CD for the sphere was set equal to one.

*The angles Yir Y91 V3 represent infinitesimal rotations about ﬁ), .‘ﬁ), 3’5, re- -
spectively.
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The mooring forces are provided by ten symmetrically spaced cables. These
cables have the identical size and spring constant as those used previously for the
tetrshedron and are fastened at the ocean bottom. About 800 feet from the top, each
cable is joined to another cable of identical properties (see Figure 22). The main
lirte is attached to the sphere at an elevation angle of 20 degrees above the sphere's
equator, while the lower branch of each anchor line is tied to the lower pole of the
sphere, providing stability.

For the system simulated, the buoyant force was to be WB =2 x 10° pounds
and the center of buoyancy was located 250 feet above the geometric center of a 500
foot radius sphere. The mass of the sphere was taken equal to the mass of the en-
closed volume of water, i.e., m = 0.8126 x 1010 slugs. The moments of inertia of
a typlcal spherical envelope were calculated to be 0.196 x 1010 slug-feet squared.
Attitude damping equivalent to 10 percent was assumed to derive from internal parts
of the sphere moving through water, and perhaps some artifizial dampers (e.g., fins).
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Tke direct integration of the equations of mction was quite time consuming

because of rapid attitude oscillations superimposed on the slow translational motion.

It was found, however, that very accurate results could be obtained for the trans-

lational moticn by taking the attitude angles identically equal to zero. That is, the
small attitude motions usuzlly encountered have a negligible effect on the transia-
tions and, thus, that part of the coupling cculd be ignored. Likewlse, by assuming
various fixed displacements of the mass center and integrating the attitude motion

over several cycles one can get a rather good approximation of the attitude motions.

in that manner, this part of the coupling was also alleviated.

Figures 40 through 43 show the translational motion resulting frcm digital
simulations. Figure 40 shows the ux motion caused by sudden application of a 1/4
knot current to a sphere in equilibs :um. The slow response (with a period of about
1 hour!) reflects the extremely large mass involved. The displacement is a small
fraction of the height above the ocean bottom. Figures 41 through 43 show the ef-
fects of a 1/2 knnt current under the same initial conditions at argles of incidence
A =0, 12, and 24 degrees, respectively. The effects then repeat because of symme-
try. We note the rather slow and underdamped behavior. The displacements are
not, however, large. Possibly the number and/or size of the anchor cables can be
reduced.

Figures 44 through 49 give results for the simulation of attitude motions.
Figure 44 shows the effect of an initial displacement of 0.1 radian. Tigures-45
through 48 show the attitude motions as excited by initial displacements of the mass
center A% = 20, 40, 60, 80 feet, respectively. Note the rapid convergence to a static
reorientation and high-frequency oscillations. The steady-state angular displace-
ment is no greater than 0.04 radian. Figurc 49 shows the attitude motions for in-
ital displacements Ax = 60 feet and Ay = 20 feet. This leads to angular displace-
ments about both the x and y axes.

It seems that steady-state angular displacements are somewhat greater for
the sphere than the tetrahedral structure, but still quite tolerable.
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